CPCIF

中国石油和化学工业联合会团体标准

T/CPCIF 0189—2022

绿色设计产品评价技术规范 氯化聚乙烯

Technical specification for green-design product assessment— Chlorinated polyethylene

2022-04-14 发布

前 言

本文件按照 GB/T 1.1—2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国石油和化学工业联合会提出。

本文件由中国石油和化学工业联合会标准化工作委员会归口。

本文件起草单位:杭州科利化工股份有限公司、渤海巨翔衡水新材料科技有限公司、潍坊亚星化学股份有限公司、北京中化联合认证有限公司、江苏科利新材料有限公司、北京联化技术服务有限公司。

本文件主要起草人: 张新江、刘国会、韩海滨、商立鹏、郭秀华、景伟、张灿明、杨雷、钟棉军、郎宪宝、张琳琳。

绿色设计产品评价技术规范 氯化聚乙烯

1 范围

本文件规定了氯化聚乙烯绿色设计产品的评价原则和方法、评价要求、产品生命周期评价及评价报告编制方法。

本文件适用于氯化聚乙烯绿色设计产品的评价。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB/T 2589 综合能耗计算通则
- GB 12348 工业企业厂界环境噪声排放标准
- GB 17167 用能单位能源计量器具配备和管理通则
- GB/T 19001 质量管理体系 要求
- GB/T 23331 能源管理体系 要求及使用指南
- GB/T 24001 环境管理体系 要求及使用指南
- GB/T 24040 环境管理 生命周期评价 原则与框架
- GB/T 24044 环境管理 生命周期评价 要求与指南
- GB/T 26572 电子电气产品中限用物质的限量要求
- GB 31571 石油化学工业污染物排放标准
- GB/T 32161 生态设计产品评价通则
- GB/T 33000 企业安全生产标准化基本规范
- GB/T 45001 职业健康安全管理体系 要求及使用指南
- HG/T 2704 氯化聚乙烯
- HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法
- HJ/T 30 固定污染物排气中氯气的测定 甲基橙分光光度法
- HJ 836 固定污染源废气 低浓度颗粒物的测定 重量法

3 术语和定义

下列术语和定义适用于本文件。

3. 1

绿色设计产品 green-design product

在原材料获取、产品生产、使用、废弃处置等全生命周期过程中,在技术可行和经济合理的前提下,

具有能源消耗少、污染排放低、环境影响小、对人体健康无害、便于回收再利用的符合产品性能和安全 要求的产品。

3. 2

生命周期 life cycle

产品系统中前后衔接的一系列阶段,从自然界或从自然资源中获取原材料,直至最终处置。

3.3

生命周期评价报告 report for life cycle assessment

依据生命周期评价方法编制的用于披露产品生态设计情况以及全生命周期环境影响信息的报告。

4 评价原则和方法

4.1 评价原则

4.1.1 生命周期评价与指标评价相结合的原则

依据生命周期评价与指标评价相结合的原则,考虑氯化聚乙烯产品的整个生命周期,从原材料获取、产品生产、产品使用等阶段,深入分析各个阶段的资源能源消耗、生态环境影响、人体健康危害因素,选取各阶段的指标构成评价指标体系。

4.1.2 环境影响种类最优选取原则

根据氯化聚乙烯产品特点和生产工艺特性,同时考虑社会关注度高、国家法律或政策明确要求的环境影响种类,选取原料单耗、新鲜水使用量、废物回收及资源化利用率、单位产品综合能耗等指标进行评价。

4.2 评价方法和流程

4.2.1 评价方法

同时满足以下条件的氯化聚乙烯产品可称为绿色设计产品:

- a) 满足基本要求(见 5.1)和评价指标要求(见 5.2);
- b) 提供氯化聚乙烯产品生命周期评价报告。

4.2.2 评价流程

根据氯化聚乙烯产品的特点明确评价范围,根据评价指标体系的指标和生命周期评价方法收集相关数据,对数据进行分析,对照基本要求和评价指标要求对产品进行评价。符合基本要求和评价指标要求,同时提供该产品的生命周期评价报告,可以判定该产品符合绿色设计产品的评价要求。

评价流程见图1。

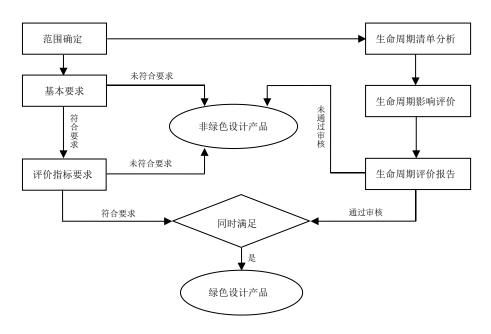


图 1 氯化聚乙烯绿色设计产品评价流程

5 评价要求

5.1 基本要求

- 5.1.1 氯化聚乙烯质量性能指标应符合 HG/T 2704 的要求。
- 5.1.2 截至评价日3年内生产企业无重大安全事故和环境污染事件。
- 5.1.3 应采用国家鼓励的先进技术工艺,不应使用国家或有关部门发布的淘汰的或禁止的技术、工艺和装备。积极推行清洁生产。
- 5.1.4 生产企业应持续关注国家、行业明令禁用的有害物质。不应使用国家、行业明令淘汰或禁止的材料,不应超越范围选用限制使用的材料。
- 5.1.5 生产企业应对装置生产的废物进行资源化利用或无害化处理,所产"三废"达标排放。
- 5.1.6 蒸汽冷凝水应充分回收利用,不应直接排放。
- 5.1.7 安全生产标准化水平应按照地方政府要求达到 GB/T 33000 相应级别的要求。
- 5.1.8 生产企业应按照 GB 17167 配备能源计量器具。
- 5. 1.9 生产企业应按照 GB/T 19001、GB/T 24001、GB/T 45001、GB/T 23331 分别建立并运行质量管理体系、环境管理体系、职业健康安全管理体系、能源管理体系。
- 5.1.10 鼓励企业按照《企业环境信息依法披露管理办法》公开环境信息,鼓励企业承诺实施责任关怀。

5.2 评价指标要求

指标体系由一级指标和二级指标组成。一级指标包括资源属性指标、能源属性指标、环境属性指标和产品属性指标。

评价指标要求见表 1。

表 1 评价指标基准值

	农 ,							
一级 指标	二级指标		单 位	指标 方向	基 准 值	判定依据	所属生命 周期阶段	
111/1/1	聚乙烯转化率		%	<i>为</i> [1]	98.4	依据 A.1 计算	/月初別 权	
			%	<i>></i>	, , ,		原材料获取	
V2 10*	液氯轴				93.3	依据 A.1 计算		
资源		深合漏失率	%	€	1.5	依据 A.2 计算		
属性	水重复	[利用率	%	≥	96	依据 A.3 计算	产品生产	
	包装				应使用可回收/	提供包装实物	/ HH_L_/	
	U1X				可重复使用包装物	图片及说明		
能源	角份的	· 品综合能耗	1,000/t		360	依据 GB/T 2589	产品生产	
属性	半巡广	吅 尔	kgce/t	*	300	计算	广帕生厂	
	康 L				满足 GB 31571 表 2"水污	4E ZH-4A NDIAET A-		
	废水			_	染物特别排放限值"要求	提供检测报告		
		氯(氯气) mg/			依据 HJ/T 30 检测,			
			mg/Nm³	≤	5.0	提供检测报告	产品生产	
环境						依据 HJ/T 27 检测,		
属性	废气	废气 氯化氢 mg/Ni	mg/Nm³	€	30	提供检测报告		
		merch's at				依据 HJ 836 检测,		
		颗粒物	mg/Nm³	≤	10	提供检测报告		
		昼间厂界环境噪声	dB(A)	€	65	依据 GB 12348 检		
	噪声	夜间厂界环境噪声	dB(A)	\leq	55	, 测,提供检测报告		
	铅		%	\leq	0.1			
	镉		%	\leq	0.01			
产品	品 汞		%	\leq	0.1	 依据 GB/T 26572 检		
属性			%	\leq	0.1	测,提供检验报告	产品生产	
•	多溴联苯		%	\left\)	0.1			
	多溴二苯醚		%	<u> </u>	0.1			

5.3 检验方法和指标计算方法

各指标的计算方法依据附录 A。

6 产品生命周期评价

6.1 生命周期评价方法

依据 GB/T 24040、GB/T 24044、GB/T 32161 给出的生命周期评价方法学框架、总体要求及其附录进行氯化聚乙烯产品生命周期评价,编制生命周期评价报告,见本文件附录 B。

6.2 生命周期评价要求

6.2.1 评价对象及工具

报告应详细描述评估的对象和产品主要功能,提供产品的材料构成及主要技术参数表,绘制并说明 产品的系统边界,披露所使用的基于中国数据的生命周期评价工具。

6.2.2 生命周期清单分析

报告应提供考虑的生命周期阶段,说明每个阶段所考虑的清单因子及收集到的现场数据或背景数据,涉及到数据分配的情况应说明分配方法和结果。

6.2.3 生命周期影响评价

报告应提供产品生命周期各阶段的不同影响类型的特征化值,并对不同影响类型在生命周期各阶段的分布情况进行比较分析。

7 绿色设计产品评价报告

7.1 基本信息

报告应提供报告信息、申请者信息、评估对象信息、采用的标准信息等基本信息。其中,报告信息包括报告编号、编制人员、审核人员、发布日期等;申请者信息包括公司全称、统一社会信用代码、地址、联系人、联系方式等;评估对象信息包括产品名称、主要指标、生产商及厂址等;采用的标准信息应包括标准名称及标准编号。

7.2 符合性评价

报告应提供对基本要求和评价指标要求的符合性情况,并提供所有评价指标报告期比基准值的符合性说明。其中报告期为当前评价的年份,一般指产品参与评价年份的上一年。

7.3 绿色设计改进方案

在分析指标的符合性评价结果以及生命周期评价结果的基础上提出产品绿色设计改进的具体方案。

7.4 评价报告主要结论

应说明该产品对评价指标的符合性结论、生命周期评价结果、提出的改进方案,并根据评价结论初 步判断该产品是否为绿色设计产品。

7.5 附件

报告应在附件中提供:

- a) 产品原始包装图:
- b) 产品生产材料清单;
- c) 产品工艺表(产品生产工艺过程等);
- d) 各单元过程的数据收集表;
- e) 其他。

附 录 A (规范性) 检验方法和指标计算方法

A.1 聚乙烯/液氯转化率

聚乙烯/液氯转化率按公式(A.1)计算:

$$W = \frac{M_i}{M} \times 100\% \qquad \dots$$
 (A.1)

式中:

W——产品的聚乙烯/液氯转化率;

 M_i ——聚乙烯/液氯理论消耗量的数值,单位为吨(t);

M——在一定统计计量时间内产品聚乙烯/液氯的实际消耗量的数值,单位为吨(t)。

A.2 用水综合漏失率

用水综合漏失率按公式(A.2)计算:

$$L_{\rm w} = \frac{V_{\rm L}}{V_{\rm i}} \times 100\% \tag{A.2}$$

式中:

 L_{w} —用水综合漏失率;

 V_L ——在一定统计计量时间内企业的漏失水量的数值,单位为立方米 (m^3) ;

 V_1 ——在一定统计计量时间内企业的取水量的数值,单位为立方米(\mathbf{m}^3)。

A.3 水重复利用率

水重复利用率按公式(A.3)计算:

$$R = \frac{V_{\rm r}}{V_{\rm i} + V_{\rm r} - V_{\rm c}} \times 100\%$$
 (A.3)

式中:

R——水重复利用率;

 V_{r} ——在一定统计计量时间内企业的重复利用水量的数值,单位为立方米 (m^3) ;

 V_i ——在一定统计计量时间内企业的取水量的数值,单位为立方米(\mathbf{m}^3);

 V_{c} ——在一定统计计量时间内企业生产的产品带走的水量的数值,单位为立方米(\mathbf{m}^{3})。

附 录 B (资料性) 氯化聚乙烯生命周期评价方法

B. 1 目的

氯化聚乙烯的原辅料与能源的获取、原材料与能源运输、产品的生产、产品的分配过程中对环境造成的影响,通过评价氯化聚乙烯全生命周期的环境影响大小,提出产品设计改进方案,从而大幅提升产品的环境友好性。

B. 2 范围

B. 2.1 功能单位

功能单位必须是明确规定并且可测量。本部分以每吨氯化聚乙烯为功能单位表示。

B. 2. 2 系统边界

本附录界定的氯化聚乙烯产品生命周期系统边界:原辅料与能源的获取阶段;原材料与能源运输阶段;产品的生产阶段;产品的分配阶段。如图 B.1 所示。

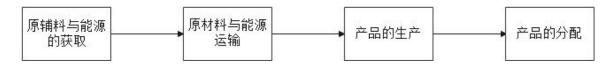


图 B. 1 氯化聚乙烯产品生命周期系统边界图

生命周期评价(LCA)的覆盖时间应在规定的期限内。数据应反映具有代表性的时期(取最近 3 年内有效值)。如果未能取得 3 年内有效值,应做具体说明。

原材料数据应是在参与产品的生产和使用的地点/地区。

生产过程数据应是在最终产品的生产中所涉及的地点/地区。

B. 2. 3 数据取舍原则

单元过程数据种类很多,应对数据进行适当的取舍,原则如下:

- a) 能源的所有输入均列出;
- b) 原料的所有输入均列出;
- c) 辅助材料质量小于原料总消耗 0.3%的项目输入可忽略:
- d) 大气、水体的各种排放均列出;
- e) 小于固体废弃物排放总量 1%的一般性固体废弃物可忽略;
- f) 道路与厂房的基础设施、各工序的设备、厂区内人员及生活设施的消耗和排放均忽略;
- g) 任何有毒有害材料和物质均应包含于清单中,不可忽略。

B. 3 生命周期清单分析

B. 3. 1 总则

应编制氯化聚乙烯产品生命周期系统边界内的所有材料/能源输入、污染物输出清单,作为产品生命周期评价的依据。如果数据清单有特殊情况、异常点或其他问题,应在报告中进行明确说明。

当数据收集完成后,应对收集的数据进行审定。然后,确定每个单元过程的基本流,并据此计算出单元过程的定量输入和输出。此后,将每个单元过程的输入、输出数据除以产品的产量,得到功能单位的资源消耗和环境排放。最后,将产品各单元过程中相同的影响因素的数据求和,以获取该影响因素的总量,为产品级的影响评价提供必要的数据。

B. 3. 2 数据收集

B. 3. 2. 1 概况

应将以下要素纳入数据清单:

- a) 原材料采购和预加工;
- b) 生产全流程及污染物排放;
- c) 产品分配和储存;
- d) 使用阶段;
- e) 运输。

基于 LCA 的信息中要使用的数据分为两类:现场数据和背景数据。主要数据尽量使用现场数据。如果现场数据收集缺乏,可以选择背景数据。

现场数据是在现场具体操作过程中收集来的,主要包括生产过程的能源与水消耗、产品原材料的使用量、产品主要包装材料的使用量和废弃物产生量等。现场数据还应包括运输数据,即产品原料、主要包装等从制造地点到最终交货点的运输距离。

背景数据应当包括主要原料的生产数据、权威的电力组合数据(如火力发电、水力发电、风力发电等)、不同运输类型造成的环境影响以及产品成分在环境中降解或在本企业污水处理设施内处理过程的排放数据。

B. 3. 2. 2 现场数据采集

应描述代表某一特定设施或设施的活动而直接测量或收集的数据相关采集规程。可直接对过程进行的测量或者通过采访或问卷调查从经营者处获得的测量值为特定过程最具代表性的数据来源。

现场数据的质量要求包括:

- a) 代表性:现场数据应按照企业生产单元收集所确定范围内的生产统计数据。
- b) 完整性: 现场数据应采集完整的生命周期要求数据。
- c) 准确性:现场数据中的资源、能源、原材料消耗数据应该来自生产单元的实际生产统计记录; 环境排放数据优先选择相关的环境监测报告,或者由排污因子或物料平衡公式计算获得。所有 现场数据均须转换为以单位产品即克每立方米为基准计算,且需要详细记录相关的原始数据、 数据来源、计算过程等。
- d) 一致性:企业现场数据收集时应保持相同的数据来源、统计口径、处理规格等。 典型现场数据来源包括:
 - ——原材料采购和预加工:
 - ——原材料由原材料供应商处运输至氯化聚乙烯生产商处的运输数据;
 - ——生产过程的碳能源和水资源消耗数据;

- ——原材料分配及用量数据;——包装材料数据,包括原材料包装数据;——产品生产现场"三废"排放及资源化利用数据;——由生产商处运输至经销商处的运输数据;
- ——生产废水经污水处理厂所消耗的数据。

B. 3. 2. 3 背景数据采集

背景数据不是直接测量或计算得到的数据。所使用数据的来源应有清楚的文件记载并载入产品生命周期评价报告。

背景数据的质量要求包括:

- a) 代表性:背景数据应优先选择企业的原材料供应商提供的符合相关 LCA 标准要求的、经第三方独立验证的上游产品 LCA 报告中的数据。若无,须优先选择代表中国国内平均生产水平的公开 LCA 数据,数据的参考年限应优先选择近年数据。在没有符合要求的中国国内数据的情况下,可以选择国外同类技术数据作为背景数据。
- b) 完整性:背景数据的系统边界应该从资源开采到这些原辅材料或能源产品出厂为止。
- c) 一致性: 所有被选择的背景数据应完整覆盖本部分确定的生命周期清单因子, 并且应将背景数据转换为一致的物质名录后再进行计算。

B. 3. 2. 4 原辅料与能源的获取阶段

该阶段始于从大自然提取资源,结束于原材料/能源进入产品生产设施,包括:

- a) 开采和提取;
- b) 所有材料的预加工、能源的生产等;
- c) 原料净化、转换回收的材料;
- d) 原料的前处理及管道输送。

B. 3. 2. 5 生产阶段

该阶段始于原材料/能源进入生产设施,结束于产品离开生产储存设施。生产活动包括合成、精制及半成品的输送、副产物回收利用及"三废"的无害化处理等。

B. 3. 2. 6 产品分配

该阶段将氯化聚乙烯产品分配给各地经销商,可沿着供应链将其储存在各点,包括运输方式、车辆 类型、燃料消耗量、装货速率、回空数量、运输距离、根据负载限制因素(即高密度产品质量和低密度 产品体积)的商品运输分配以及运输车辆的燃料使用量。

B. 3. 2. 7 物流

应考虑的运输参数包括运输方式、车辆类型、燃料消耗量、装货速率、回空数量、运输距离、根据负载限制因素(即高密度产品质量和低密度产品体积)的商品运输分配以及运输车辆的燃料使用量。

B. 3. 3 数据分配

在进行氯化聚乙烯生命周期评价的过程中涉及到数据分配问题,特别是氯化聚乙烯产品的生产环节。对于该产品生产线而言,由于生产环节较多,同时存在"三废"的资源化利用和副产物的提纯回收。很难就该产品生产收集清单数据,往往会就整条生产线收集数据,然后根据产品、副产物和"三废"资源再分配到具体的产品上。

B. 3. 4 生命周期影响评价

B. 3. 4. 1 数据分析

根据表 B.1~表 B.4 对应需要的数据进行填报:

- a) 现场数据可通过企业调研、上游厂家提供、采样监测等途径进行收集,所收集的数据要求为企业3年内平均统计数据,并能够反映企业的实际生产水平;
- b) 从实际调研过程中无法获得的数据,即背景数据,采用相关数据库进行替代,在这一步骤中所 涉及到的单元过程包括氯化聚乙烯行业相关原材料生产、包装材料、能源消耗以及产品的运输。

表 B. 1 原材料成分、用量及运输清单

原材料	含量/%	单次使用消耗量/kg	原材料产地	运输方式	运输距离/km	单位产品运输距离/(km/kg)
氯气						
氯乙烯						
•••••						

表 B. 2 生产过程所需清单

能耗种类	单 位	装置生产总消耗量	单次使用产品消耗量
电	千瓦时 (kW·h)		
水	吨 (t)		
煤	兆焦 (MJ)		
蒸汽	立方米 (m³)		

表 B. 3 包装过程所需清单

材料	单位产品用量/kg	单次使用产品消耗量/kg
牛皮纸袋		
塑料编织袋		
尼龙吨袋		

表 B. 4 运输过程所需清单

过 程	运输方式	运输距离/km	单位产品运输距离/(km/kg)
从生产地到总经销商			
从总经销商到分经销商			
从生产地到分经销商的总运输距离			

氯化聚乙烯成分在环境中降解或在废弃物处理厂处理过程的排放相关的排放因子如表 B.5 所示。

表 B. 5 废弃物处理背景数据

项目	产生量	处理方式
污水总排口 COD 浓度		
有机废液无害化处理率		
产品废水排放量		

B. 3. 4. 2 清单分析

所收集数据进行核实后,利用生命周期评估软件进行数据的分析处理,用以建立生命周期评价科学完整的计算程序。企业可根据实际情况选择软件,通过建立各个过程单元模块,输入各过程单元的数据,可得到全部输入与输出物质和排放清单,选择表 B.6 各个清单因子的量(以 kg 为单位),为分类评价做准备。

B. 4 影响评价

B. 4.1 影响类型

影响类型分为资源能源消耗、生态环境影响和人体健康危害 3 类。 氯化聚乙烯的影响类型采用化石能源消耗、气候变化/碳足迹、富营养化和人体健康危害 4 个指标。

B. 4. 2 清单因子归类

根据清单因子的物理化学性质将对某影响类型有贡献的因子归到一起,见表 B.6。例如,将对气候变化有贡献的二氧化碳等清单因子归到气候变化/碳足迹影响类型里面。

影 响 类 型	清单因子归类	
化石能源消耗	煤、天然气	
气候变化/碳足迹	二氧化碳 (CO ₂)	
富营养化	总磷、总氮、氨氮	
人体健康危害	氮氧化物、二氧化硫、粉尘颗粒物	

表 B. 6 氯化聚乙烯产品生命周期清单因子归类

B. 4. 3 分类评价

计算出不同影响类型的特征化模型。分类评价的结果采用表 B.7 中的当量物质表示。

Mary Mark County BET A 12 Mary 12 M					
环境类别	单 位	指标参数	特征化因子		
AR ME MV +d	ないと目が	煤	5.69×10^{-8}		
能源消耗	锑当量/kg	天然气	1.42×10^{-4}		
全球变暖	CO ₂ 当量/kg	CO ₂	1		
富营养化	NO3 当量/kg	TN	2.61		
		NH ₃ -N	3.64		
		TP	28.2		
		NO_x	1.2		
人体健康危害	1,4-二氯苯当量/kg	SO_x	0.096		
		颗粒物	0.82		

表 B. 7 氯化聚乙烯产品生命周期影响评价

B. 4. 4 计算方法

影响评价结果计算方法见公式(B.1):

$$EP_i = \sum EP_{ij} = \sum (Q_j \cdot EF_{ij}) \qquad \cdots \qquad (B.1)$$

式中:

 EP_i ——第 i 种影响类型特征化值;

 EP_{ij} — 第 i 种影响类型中第 j 种清单因子的贡献;

 Q_{i} — 第j 种清单因子的排放量;

 EP_{ij} 一第 i 种影响类型中第 j 种清单因子的特征化因子。

12

中国石油和化学工业联合会 团 体 标 准 绿色设计产品评价技术规范 氯化聚乙烯

T/CPCIF 0189—2022 出版发行: 化学工业出版社 (北京市东城区青年湖南街 13 号 邮政编码 100011) 北京科印技术咨询服务有限公司数码印刷分部 880mm×1230mm 1/16 印张 1½ 字数 千字 2022 年 7 月北京第 1 版第 1 次印刷 书号: 155025•

> 购书咨询: 010-64518888 售后服务: 010-64518899

网址: http://www.cip.com.cn

凡购买本书, 如有缺损质量问题, 本社销售中心负责调换。

定价: 25.00元

版权所有 违者必究